In Computer graphics

Transformation is a process of modifying and re-positioning the existing graphics.

- 2D Transformations take place in a two dimensional plane.
- Transformations are helpful in changing the position, size, orientation, shape etc of the object.
- In computer graphics, various transformation techniques are-

we will discuss about 2D Translation in Computer Graphics.

In Computer graphics,

2D Translation is a process of moving an object from one position to another in a two dimensional plane.

Consider a point object O has to be moved from one position to another in a 2D plane.

Let-

- Initial coordinates of the object $O = (X_{old}, Y_{old})$
- New coordinates of the object O after translation = (X_{new}, Y_{new})
- Translation vector or Shift vector = (T_x, T_y)

Given a Translation vector (T_x, T_y)-

- T_x defines the distance the X_{old} coordinate has to be moved.
- T_y defines the distance the Y_{old} coordinate has to be moved.

2D Translation in Computer Graphics

This translation is achieved by adding the translation coordinates to the old coordinates of the object as-

- $X_{new} = X_{old} + T_x$ (This denotes translation towards X axis)
- $Y_{new} = Y_{old} + T_y$ (This denotes translation towards Y axis)

In Matrix form, the above translation equations may be represented as-

- The homogeneous coordinates representation of (X, Y) is (X, Y, 1).
- Through this representation, all the transformations can be performed using matrix / vector multiplications.

The above translation matrix may be represented as a 3 x 3 matrix as-

2D Rotation in Computer Graphics-

In Computer graphics,

2D Rotation is a process of rotating an object with respect to an angle in a two dimensional plane.

Consider a point object O has to be rotated from one angle to another in a 2D plane.

Let-

- Initial coordinates of the object $O = (X_{old}, Y_{old})$
- Initial angle of the object O with respect to origin = Φ
- Rotation angle = θ
- New coordinates of the object O after rotation = (X_{new}, Y_{new})

2D Rotation in Computer Graphics

This rotation is achieved by using the following rotation equations-

- $X_{new} = X_{old} x \cos\theta Y_{old} x \sin\theta$
- $Y_{new} = X_{old} x \sin\theta + Y_{old} x \cos\theta$

In Matrix form, the above rotation equations may be represented as-

For homogeneous coordinates, the above rotation matrix may be represented as a 3 x 3 matrix as-

2D Scaling in Computer Graphics-

In computer graphics, scaling is a process of modifying or altering the size of objects.

- Scaling may be used to increase or reduce the size of object.
- Scaling subjects the coordinate points of the original object to change.
- Scaling factor determines whether the object size is to be increased or reduced.
- If scaling factor > 1, then the object size is increased.
- If scaling factor < 1, then the object size is reduced.

Consider a point object O has to be scaled in a 2D plane.

Let-

- Initial coordinates of the object $O = (X_{old}, Y_{old})$
- Scaling factor for X-axis = S_x
- Scaling factor for Y-axis = S_y
- New coordinates of the object O after scaling = (X_{new}, Y_{new})

This scaling is achieved by using the following scaling equations-

- $X_{new} = X_{old} \times S_x$
- $Y_{new} = Y_{old} \times S_y$

In Matrix form, the above scaling equations may be represented as-

For homogeneous coordinates, the above scaling matrix may be represented as a 3 x 3 matrix as-

