In Computer graphics
Transformation is a process of modifying and re-positioning the existing graphics.

- 2D Transformations take place in a two dimensional plane.
- Transformations are helpful in changing the position, size, orientation, shape etc of the object.
- In computer graphics, various transformation techniques are-

we will discuss about 2D Translation in Computer Graphics.

In Computer graphics,
2D Translation is a process of moving an object from one position to another in a two dimensional plane.

Consider a point object O has to be moved from one position to another in a 2D plane.

Let-

- Initial coordinates of the object $\mathrm{O}=\left(\mathrm{X}_{\text {old }}, \mathrm{Y}_{\text {old }}\right)$
- New coordinates of the object O after translation $=\left(\mathrm{X}_{\text {new }}, \mathrm{Y}_{\text {new }}\right)$
- Translation vector or Shift vector $=\left(\mathrm{T}_{\mathrm{x}}, \mathrm{T}_{\mathrm{y}}\right)$

Given a Translation vector $\left(\mathrm{T}_{\mathrm{x}}, \mathrm{T}_{\mathrm{y}}\right)$ -

- T_{x} defines the distance the $\mathrm{X}_{\text {old }}$ coordinate has to be moved.
- T_{y} defines the distance the $\mathrm{Y}_{\text {old }}$ coordinate has to be moved.

2D Translation in Computer Graphics

This translation is achieved by adding the translation coordinates to the old coordinates of the object as-

- $X_{\text {new }}=X_{\text {old }}+T_{x} \quad$ (This denotes translation towards X axis)
- $\mathrm{Y}_{\text {new }}=\mathrm{Y}_{\text {old }}+\mathrm{T}_{\mathrm{y}} \quad$ (This denotes translation towards Y axis)

In Matrix form, the above translation equations may be represented as-

$$
\begin{aligned}
{\left[\begin{array}{l}
\mathrm{X}_{\text {new }} \\
\mathrm{Y}_{\text {new }}
\end{array}\right]=\left[\begin{array}{l}
\mathrm{X}_{\text {old }} \\
\mathrm{Y}_{\text {old }}
\end{array}\right]+\left[\begin{array}{c}
\mathrm{T}_{\mathrm{x}} \\
\mathrm{~T}_{\mathrm{y}}
\end{array}\right] } \\
\text { Translation Matrix }
\end{aligned}
$$

- The homogeneous coordinates representation of (X, Y) is (X, Y, 1).
- Through this representation, all the transformations can be performed using matrix / vector multiplications.

The above translation matrix may be represented as a 3×3 matrix as-

2D Rotation in Computer Graphics-

In Computer graphics,
2D Rotation is a process of rotating an object with respect to an angle in a two dimensional plane.

Consider a point object O has to be rotated from one angle to another in a 2D plane.

Let-

- Initial coordinates of the object $\mathrm{O}=\left(\mathrm{X}_{\text {old }}, \mathrm{Y}_{\text {old }}\right)$
- Initial angle of the object O with respect to origin $=\Phi$
- Rotation angle $=\theta$
- New coordinates of the object O after rotation $=\left(\mathrm{X}_{\text {new }}, \mathrm{Y}_{\text {new }}\right)$

2D Rotation in Computer Graphics

This rotation is achieved by using the following rotation equations-

- $\mathrm{X}_{\text {new }}=\mathrm{X}_{\text {old }} \mathrm{X} \cos \theta-\mathrm{Y}_{\text {old }} \mathrm{X} \sin \theta$
- $\mathrm{Y}_{\text {new }}=\mathrm{X}_{\text {old }} \mathrm{X} \sin \theta+\mathrm{Y}_{\text {old }} \mathrm{X} \cos \theta$

In Matrix form, the above rotation equations may be represented as-

$$
\left[\begin{array}{l}
X_{\text {new }} \\
Y_{\text {new }}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] X\left[\begin{array}{l}
X_{\text {old }} \\
Y_{\text {old }}
\end{array}\right]
$$

Rotation Matrix

For homogeneous coordinates, the above rotation matrix may be represented as a 3×3 matrix as-

2D Scaling in Computer Graphics-

In computer graphics, scaling is a process of modifying or altering the size of objects.

- Scaling may be used to increase or reduce the size of object.
- Scaling subjects the coordinate points of the original object to change.
- Scaling factor determines whether the object size is to be increased or reduced.
- If scaling factor >1, then the object size is increased.
- If scaling factor < 1, then the object size is reduced.

Consider a point object O has to be scaled in a 2D plane.

Let-

- Initial coordinates of the object $\mathrm{O}=\left(\mathrm{X}_{\text {old }}, \mathrm{Y}_{\text {old }}\right)$
- Scaling factor for X -axis $=\mathrm{S}_{\mathrm{x}}$
- Scaling factor for Y -axis $=\mathrm{S}_{\mathrm{y}}$
- New coordinates of the object O after scaling $=\left(\mathrm{X}_{\text {new }}, \mathrm{Y}_{\text {new }}\right)$

This scaling is achieved by using the following scaling equations-

- $X_{\text {new }}=X_{\text {old }} X S_{x}$
- $Y_{\text {new }}=Y_{\text {old }} X S_{y}$

In Matrix form, the above scaling equations may be represented as-

$$
\left[\begin{array}{l}
X_{\text {new }} \\
Y_{\text {new }}
\end{array}\right]=\left[\begin{array}{cc}
S_{x} & 0 \\
0 & S_{y}
\end{array}\right] X\left[\begin{array}{l}
X_{\text {old }} \\
Y_{\text {old }}
\end{array}\right]
$$

Scaling Matrix

For homogeneous coordinates, the above scaling matrix may be represented as a 3×3 matrix as-

$$
\left[\begin{array}{c}
X_{\text {new }} \\
Y_{\text {new }} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
S_{x} & 0 & 0 \\
0 & S_{y} & 0 \\
0 & 0 & 1
\end{array}\right] X\left[\begin{array}{c}
X_{\text {old }} \\
Y_{\text {old }} \\
1
\end{array}\right]
$$

Scaling Matrix
(Homogeneous Coordinates Representation)

